963 research outputs found

    Performance of screening for aneuploidies by cell-free DNA analysis of maternal blood in twin pregnancies

    Get PDF
    Objectives To report clinical implementation of cell‐free DNA (cfDNA) analysis of maternal blood in screening for trisomies 21, 18 and 13 in twin pregnancies and examine variables that could influence the failure rate of the test. Methods cfDNA testing was performed in 515 twin pregnancies at 10–28 weeks' gestation. The failure rate of the test to provide results was compared with that in 1847 singleton pregnancies, and logistic regression analysis was used to determine which factors among maternal and pregnancy characteristics were significant predictors of test failure. Results Failure rate of the cfDNA test at first sampling was 1.7% in singletons and 5.6% in twins. Of those with a test result, the median fetal fraction in twins was 8.7% (range, 4.1–30.0%), which was lower than that in singletons (11.7% (range, 4.0–38.9%)). Multivariable regression analysis demonstrated that twin pregnancy, higher maternal weight and conception by in‐vitro fertilization provided significant independent prediction of test failure. Follow‐up was available in 351 (68.2%) of the twin pregnancies and comprised 334 with euploid fetuses, 12 discordant for trisomy 21 and five discordant for trisomy 18. In all 323 euploid cases with a result, the risk score for each trisomy was < 1:10 000. In 11 of the 12 cases with trisomy 21 and in the five with trisomy 18, the cfDNA test gave a high‐risk result, but in one case of trisomy 21, the score was < 1:10 000. Conclusion In twin pregnancies screening by cfDNA testing is feasible, but the failure rate is higher and detection rate may be lower than in singletons

    Modeling and analysis of energy distribution networks using switched differential systems

    No full text
    It is a pleasure to dedicate this contribution to Prof. Arjan van der Schaft on the occasion of his 60th birthday. We study the dynamics of energy distribution networks consisting of switching power converters and multiple (dis-)connectable modules. We use parsimonious models that deal effectively with the variant complexity of the network and the inherent switching phenomena induced by power converters. We also present the solution to instability problems caused by devices with negative impedance characteristics such as constant power loads. Elements of the behavioral system theory such as linear differential behaviors and quadratic differential forms are crucial in our analysis

    When does the algebraic Riccati equation have a negative semi-definite solution?

    Get PDF
    Find a reasonable necessary and sufficient frequency domain condition, i.e, a condition in terms of the rational matrix ∂W, or possibly in terms of the two-variable rational matrix W, for the existence of a real symmetric negative semi-definite solution of the algebraic Riccati equation

    Implementation of behavioral systems

    Get PDF
    In this chapter, we study control by interconnection of a given linear differential system (the plant behavior) with a suitable controller. The problem formulations and their solutions are completely representation free, and specified only in terms of the system dynamics. A controller is a system that constrains the plant behavior through a certain set of variables. In this context, there are two main situations to be considered: either all the system variables are available for control, i.e., are control variables (full control) or only some of the variables are control variables (partial control). For systems evolving over a time domain (1D) the problems of implementability by partial (regular) interconnection are well understood. In this chapter, we study why similar results are not valid in themultidimensional (nD) case. Finally, we study two important classes of controllers, namely, canonical controllers and regular controllers

    On local linearization of control systems

    Get PDF
    We consider the problem of topological linearization of smooth (C infinity or real analytic) control systems, i.e. of their local equivalence to a linear controllable system via point-wise transformations on the state and the control (static feedback transformations) that are topological but not necessarily differentiable. We prove that local topological linearization implies local smooth linearization, at generic points. At arbitrary points, it implies local conjugation to a linear system via a homeomorphism that induces a smooth diffeomorphism on the state variables, and, except at "strongly" singular points, this homeomorphism can be chosen to be a smooth mapping (the inverse map needs not be smooth). Deciding whether the same is true at "strongly" singular points is tantamount to solve an intriguing open question in differential topology

    Input-to-state stability of infinite-dimensional control systems

    Full text link
    We develop tools for investigation of input-to-state stability (ISS) of infinite-dimensional control systems. We show that for certain classes of admissible inputs the existence of an ISS-Lyapunov function implies the input-to-state stability of a system. Then for the case of systems described by abstract equations in Banach spaces we develop two methods of construction of local and global ISS-Lyapunov functions. We prove a linearization principle that allows a construction of a local ISS-Lyapunov function for a system which linear approximation is ISS. In order to study interconnections of nonlinear infinite-dimensional systems, we generalize the small-gain theorem to the case of infinite-dimensional systems and provide a way to construct an ISS-Lyapunov function for an entire interconnection, if ISS-Lyapunov functions for subsystems are known and the small-gain condition is satisfied. We illustrate the theory on examples of linear and semilinear reaction-diffusion equations.Comment: 33 page

    Minimal symmetric Darlington synthesis

    Get PDF
    We consider the symmetric Darlington synthesis of a p x p rational symmetric Schur function S with the constraint that the extension is of size 2p x 2p. Under the assumption that S is strictly contractive in at least one point of the imaginary axis, we determine the minimal McMillan degree of the extension. In particular, we show that it is generically given by the number of zeros of odd multiplicity of I-SS*. A constructive characterization of all such extensions is provided in terms of a symmetric realization of S and of the outer spectral factor of I-SS*. The authors's motivation for the problem stems from Surface Acoustic Wave filters where physical constraints on the electro-acoustic scattering matrix naturally raise this mathematical issue

    Closed-loop data-driven simulation

    Full text link
    corecore